98% Top Quality Quinine Raw Powder CAS: 130-95-0 Made Of Cinchona Bark Pharmaceutical Grade

Basic Information
Place of Origin: CHINA
Brand Name: TINGYI
Certification: GMP , ISO 9001:2008
Model Number: 130-95-0
Minimum Order Quantity: 100g
Price: Negotiable ( Discounts For Big Order )
Packaging Details: Stealth And Discreet Packaging
Delivery Time: Within 7 Working Days
Payment Terms: Bank Transfer - Bitcoin - Western Union - MoneyGram
Supply Ability: 1000kg per month
Product Name: Quinine CAS: 130-95-0
MF: C20H24N2O2 MW: 324.42
EINECS: 205-003-2 Appearance: White Powder
High Light:

pharmaceutical active ingredients


pharmaceutical fine chemicals

                                98% Top Quality Quinine Raw Powder CAS: 130-95-0 Made Of Cinchona Bark Pharmaceutical Grade 0






Product Name:

Synonyms: Quinie;Quinine, anhydrous, 99%(total base), may cont. up to 5% dihydroquinine;Basic Quinine Hydrochloride;Chininii Chloridum;Kinin;Quinina;Quininium Chloride;Cinchonan-9-ol, 6'-methoxy-, (8α,9R)-
CAS: 130-95-0
MF: C20H24N2O2
MW: 324.42
EINECS: 205-003-2
Product Categories: chiral;Alkaloids;Biochemistry;for Resolution of Acids;Optical Resolution;Quinoline Alkaloids;Synthetic Organic Chemistry;Chiral Reagents;Intermediates & Fine Chemicals;Pharmaceuticals;AlkaloidAsymmetric Synthesis;Chiral Resolving ReagentsChiral Catalysts, Ligands, and Reagents;Cinchona AlkaloidsVoltage-gated Ion Channels;Biochemicals Found in Plants;Heterocycles;QUALAQUIN;Inhibitors;Fluorescent;Quinoline;Chiral Resolution Reagents;Monovalent Ion Channels;Nutrition Research;Potassium Channel Modulators;Privileged Ligands and Complexes
Mol File: 130-95-0.mol
Quinine Structure
Quinine Chemical Properties
Safety Information
Hazard Codes Xn,Xi
Risk Statements 36/37/38-42/43-22-20/22-20/21/22-36/38
Safety Statements 22-26-36/37-45-37/39-36-7
WGK Germany 3
RTECS VA6020000
F 8
HazardClass 6.1(b)
PackingGroup III
HS Code 29392110
Hazardous Substances Data 130-95-0(Hazardous Substances Data)
Quinine Usage And Synthesis
Pharmacology and mechanism of action Quinine is the principal alkaloid of cinchona bark. The cinchona bark was first used against fever in Peru, probably around 1630, but the compound may have been used much earlier by the native Indians. Soon thereafter it was introduced into Europe[1]. Quinine is a stereoisomer of quinidine, which has similar antimalarial properties. It is a potent schizontocidal agent against all human plasmodial species. It is also gametocytocidal against P. vivax, P. ovale, and P. malariae but not against P. falciparum [1].
The mechanism of action is probably, as for chloroquine, an inhibition of haem polymerase (cf. Chloroquine) [2].
Indications Quinine is the drug of choice in the treatment of severe and complicated chloroquine-resistant P. falciparum malaria. It is also useful for the treatment of non-severe chloroquineresistant cases.
Side effects The side effects of quinine commonly seen at therapeutic concentrations are known as cinchonism. In its mild form they include ringing in the ears (tinnitus), slight impairment of hearing, headache and nausea. The impairment of hearing is concentration-dependent and reversible [3]. More severe manifestations are vertigo, vomiting, abdominal pain, diarrhoea, marked auditory loss and different visual symptoms like diplopia and changed colour perception but also loss of vision. The visual disturbances are probably caused by ischemia in the retina and the optic nerve, and this can cause optic atrophy. In acute intoxication, CNS symptoms such as excitement, confusion, delirium, and hyperpnoea may occur, and permanent visual and hearing deficits are not uncommon. Quinine may aggravate hypoglycaemia due to malaria. Less frequent but more serious side effects of quinine include skin manifestations, asthma, thrombocytopenia, haemolysis, hepatic injury and psychosis [4, 5]. Patients with severe malaria attain and tolerate higher concentrations due to the concomitant reduction in free fraction.
Contraindications and precautions Quinine should be avoided in patients who are hypersensitive to the drug and should not be given to patients with optic neuritis and those with myasthenia gravis since it can aggravate these conditions. Digoxin clearance is decreased by quinine and the two drugs should not be combined unless plasma concentration monitoring of digoxin is feasible. Quinine causes ECG changes after large doses, and patients with cardiac diseases must be treated with caution. There is a possible risk for increased cardiovascular toxicity when quinine is given to patients taking mefloquine prophylaxis or to those who have received mefloquine treatment within the last two weeks, and continuous cardiovascular monitoring is recommended[5].Diabetic patients may need special monitoring. Dosage adjustments may be needed in patients with liver diseases [6] and older subjects [7].
Interactions Quinine shares most of the actions of quinidine, and most of the drug interactions seen with quinidine may be encountered with quinine as well. Quinine increases digoxin plasma levels, probably by reducing its non-renal clearance. Cimetidine has been reported to reduce the clearance of quinine and prolong its elimination half-life [4].
Preparations Numerous preparations (tablets, solution for injection) containing various quinine salts are available.
• Quinine hydrochloride (dihydrate). 123 mg equals 100 mg base.
• Quinine dihydrochloride. 123 mg equals 100 mg base.
• Quinine bisulphate (heptahydrate). 169 mg equals 100 mg base.
• Quinine sulphate (dihydrate). 121 mg equals 100 mg base.
description Quinine, an alkaloid derived from the bark of the cinchona tree, is a blood schizontocidal agent that is more toxic than chloroquine.Quinine is used to treat malaria caused by Plasmodium falciparum. Plasmodium falciparum is a parasite that gets into the red blood cells in the body and causes malaria. Quinine works by killing the parasite or preventing it from growing. This medicine may be used alone or given together with one or more medicines for malaria.
Quinine should not be used to treat or prevent night time leg cramps. This medicine may cause very serious unwanted effects and should only be used for patients with malaria.It is administered parenterally to patients with severe or complicated malaria who cannot take drugs by mouth because of coma, convulsions or vomiting.
It is administered orally to less seriously ill patients with infections likely to be resistant to chloroquine or mefloquine, sometimes in combination with pyrimethamine/sulfadoxine or a tetracycline.
Quinine is an extremely basic compound and is, therefore, always presented as a salt. Various preparations exist, including the hydrochloride, dihydrochloride, sulphate, bisulphate, and gluconate salts; of these the dihydrochloride is the most widely used. Quinine has rapid schizonticidal action against intra-erythrocytic malaria parasites. It is also gametocytocidal for Plasmodium vivax and Plasmodium malariae, but not for Plasmodium falciparum. Quinine also has analgesic, but not antipyretic properties. The anti-malarial mechanism of action of quinine is unknown.
Uses Quinine is one of the oldest antimalarial drugs. At as early as the 15th century, the quinine-containing cinchona bark has been used extensively in the treatment of malaria with its antimalarial effect being similar to that of chloroquine that is through interfering with DNA synthesis effect. It is capable of inhibiting the erythrocytic stage of a variety of Plasmodium, being able to control the malaria symptoms. It also has certain killing effect on the gametes of vivax malaria and quartan malaria. However, it has no effect on the exoerythrocytic stage. Its major advantage is not easy to produce drug resistance, possibly due to that quinine binds the plasmodium DNA in a different way from chloroquine, so having no cross-resistance and can be used for the treatment of the infection of anti-chloroquine strains (especially Plasmodium falciparum). In addition, quinine can also exciting the uterus, inhibit the myocardium and have antipyretic analgesic effect. In addition to medicinal application, in analytical chemistry it can be used as the detection agent of bismuth, platinum and other metal ions and also be used for the separation agent of racemic organic acid.
pharmacokinetics It can be subject to rapid and complete oral absorption with its plasma concentration being able to reach peak within 1 to 3 hours. It also has a plasma protein binding rate of about 70%. The concentration in the cerebrospinal fluid is about 2% to 5% of that in the plasma. It has a half-life of 7 to 8 hours. It can quickly penetrate through the placenta while the absorption through subcutaneous and intramuscular injection is slow. It is mainly subject to liver metabolism with about 5% of the dosage amount being excreted from the urine in the original form.
Clinically, quinine is mainly applied to the chloroquine-resistant patients infected with Plasmodium. Also used for the treatment of vivax malaria and falciparum malaria. Those for medical usage are all quinine salts. Sulfate can be used for oral administration while its hydrochloride is for injection. Until the 1920s, it had been an excellent anti-malaria drug. However, if used improperly, it can also cause poisoning, headaches, tinnitus, diarrhea, rash, vision and hearing disorders. It only has inhibitory effect on protozoan parasites without killing effect. The patient can still get relapse after being cured. To this end, scientists are still seeking more effective antimalarial drugs. Drugs currently in application include atabrine, plasmochin, chloroquinoline and so on. From a Chinese plant, antipyretic dichroa, people can extract a feerifuqine with its antimalarial effect being 100 times higher than quinine. However, it can’t be directly administrated due to the large toxicity. People are studying the structure and pharmacological effects of feerifuqine in order to find out the higher-efficacy antimalarial drugs.
Side effects 1, cinchona reaction: this can occur when the daily quinine dosage exceeds more than 1g or a little longer, manifested as nausea, vomiting, tinnitus, headache, vision hearing loss, generally being able to be restored after drug withdrawal
2, specific reaction: it can be observed of acute hemolysis, dermatitis, itching, angioneurotic edema and bronchial asthma. A small number of patients with falciparum malaria, after administrating quinine, can get chills, fever, vomiting, hemoglobinuria, urinary retention and other acute hemolytic disease, called black urine heat which can be fatal in severe cases.
3, intravenous injection, can inhibit the heart and further cause decreased blood pressure and life-threatening shock, thus it is strictly prohibited to adopt intravenous injection. Intravenous infusion should be administrated with caution. Intramuscular injection is prone to cause tissue necrosis, and thus is generally not used except in cases that oral administration is not doable.
Drug interactions 1. It is not suitable to be used in combination with aminoglycoside antibiotics, furosemide and etacrynic acid
2. It is often used in combination with primaquine or pyrimethamine in order to achieve curing and enhance the effectiveness of the control of resistant strains.
Precautions 1. Large doses can easily lead to the damage of the eighth cranial nerve and optic nerve. Patients of deafness, vestibular disorders and optic neuritis should be disabled. Patients suffering from acute phlebitis, nephritis, diabetes, cardiovascular disease, bradycardia, atrioventricular blocking should be disabled. Large doses have the effect of teratogenic and exciting the uterine smooth muscle. Menstrual women and pregnant women should be disabled for using it. It can reduce the skeletal muscle excitability so patients of myasthenia gravis should be disabled.
2 It has effects of inhibiting the heart with Intravenous infusion being easily lead to shock and not suitable for usage. Upon intravenous infusion, the patients should subject to close observation in changes of blood pressure; intramuscular injection can cause tissue necrosis, so it should be adopted of the deep gluteal muscle injection. It is forbidden to use in combination with quinidine and chloroquine so as not to cause cardiac arrest.
overdose The most frequently encountered signs of Quinine overdosage are:
  • Tinnitus, decreased auditory acuity and vertigo. Permanent deafness has resulted from exposure to toxic doses.
  • Amblyopia, constricted visual fields, diplopia and night blindness. Recovery is slow but usually complete.
  • Quinidine-like effects resulting in hypotension, conduction disturbances, anginal symptoms and ventricular tachycardia.
  • Hypoglycaemia.
  • A local irritant effect on the gastrointestinal tract resulting in nausea, vomiting, abdominal pain and diarrhoea.
A single oral dose greater than 3 g is capable of causing serious and potentially fatal intoxication in adults, preceded by depression of the central nervous system and seizures. Much smaller doses can be lethal in children.
Dysrhythmias, hypotension and cardiac arrest can result from the cardiotoxic action and ocular toxicity can lead to blindness.
Emesis should be induced and gastric lavage undertaken as rapidly as possible. Activated charcoal should then be administered.
Supportive measures, to be employed as necessary, include ventilation, and symptomatic treatment of dysrhythmias, cardiac failure and convulsions. No specific measures of proven efficacy exist to reduce the toxicity or to promote the excretion of quinine.
References: 1. Black RH, Canfield CJ, Clyde DF, Peters W, Wernsdorfer WH (1986). Quinine. In: Chemotherapy of Malaria, 2nd edn, edited by L.Bruce-Chwatt (Geneva: World Health Organization).
2. Slater AFG, Cerami A (1992). Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature, 355, 167–169.
3. Karlsson KK, Hellgren U, Alván G, Rombo L (1990). Audiometry as a possible indication of quinine plasma concentrations during treatment of malaria. Trans R Soc Trop Med Hyg, 84, 765–767.
4. Antimalarials. Martindale, The Extra Pharmacopoeia, 30th edn (1993), (London: Pharmaceutical Press), pp. 408.
5. Quinine. Therapeutic Drugs, edited by Sir Colin Dollery (1991), (London: Churchill Livingstone), pp. Q8–Q13.
6. Karbwang J, Thanavibul A, Molunto P, Na Bangchang K (1993). The pharmacokinetics of quinine in patients with hepatitis. Br J Clin Pharmacol, 35, 444–446.
7. Wanwimolruk S, Chalcroft S, Coville PF, Campbell AJ (1991). Pharmacokinetics of quinine in young and elderly subjects. Trans R Soc Trop Med Hyg, 85, 714–717.
Chemical Properties white to light yellow crystal powde
Uses Primary alkaloid of various species of Cinchona (Rubiaceae). Optical isomer of Quinidine. Antimalarial; muscle relaxant (skeletal)
Uses Because of its relatively constant and well-known fluorescence quantum yield, quinine is also used in photochemistry as a common fluorescence standard. It has been used for imaging of oxygen evolution and oxide formation. Chloride and bromide have been sh
Uses antimalarial, skeletal muscle relaxant
Uses Quinine is a flavorant naturally obtained from the cinchona tree. it is used as a bitter flavoring in beverages such as quinine water, tonic water, and bitter lemon. quinine sulfate and quinine hydrochloride are cleared for use as a flavor in carbonated beverages at levels less than 83 ppm.
Uses Quinine occurs in the dried stems or rootbarks of cinchona (Cinchona ledgerianaMoens). It is used in the treatment of malaria.It is also used as an analgesic and antipyreticagent.
Definition A poisonous ALKALOID found in the bark of the cinchona tree of South America. It is used in treating malaria.
Definition quinine: A white solid,C20H24N2O2·3H2O, m.p. 57°C. It is apoisonous alkaloid occurring in thebark of the South American cinchonatree, although it is now usually producedsynthetically. It forms saltsand is toxic to the malarial parasite,and so quinine and its salts are used to treat malaria; in small doses itmay be prescribed for colds and influenza.In dilute solutions it has apleasant astringent taste and is addedto some types of tonic water.
Definition ChEBI: A cinchona alkaloid that is cinchonidine in which the hydrogen at the 6-position of the quinoline ring is substituted by methoxy.
Antimicrobial activity Quinine inhibits the erythrocytic stages of human malaria parasites at <1 mg/L, but not the liver stages. It is active against the gametocytes of P. vivax, P. ovale and P. malariae, but not P. falciparum. The dextrarotatory stereoisomer, quinidine, is more active than quinine, but epiquinine (cinchonine) and epiquinidine (cinchonidine) have much lower antimalarial activities.
Acquired resistance Resistance is now widespread in South East Asia, where some strains are also resistant to chloroquine, sulfadoxine– pyrimethamine and mefloquine. Cross-resistance with mefloquine has been demonstrated in P. falciparum, but genetic polymorphisms associated with chloroquine resistance are not associated with quinine resistance.
Hazard Skin irritant, ingestion of pure substance adversely affects eyes.
Health Hazard The toxicity of quinine is characterized bycinchonism, a term that includes tinnitus,vomiting, diarrhea, fever, and respiratorydepression. Other effects include stimulationof uterine muscle, analgesic effect,and dilation of the pupils. Severe poisoningmay produce neurosensory disorders, causingclouded vision, double vision, buzzing of theears, headache, excitability, and sometimescoma (Ferry and Vigneau 1983). Death fromquinine poisoning is unusual. Massive dosesmay be fatal, however.
LD50 value, oral (guinea pigs): 1800 mg/kg.
Pharmaceutical Applications A quinolinemethanol from the bark of the Cinchona tree; the laevorotatory stereoisomer of quinidine. Formulated as the sulfate, bisulfate or ethylcarbonate for oral use and as the dihydrochloride for parenteral administration. The salts are highly soluble in water.
Pharmacokinetics Oral absorption: 80–90%
Cmax 600 mg oral: 5 mg/L after 1–3 h
Plasma half-life: 8.7 h
Volume of distribution: 1.8 L/kg
Plasma protein binding: c. 70%
Quinine is well absorbed by the oral route. Intramuscular administration gives more predictable data than intravenous administration and may be more useful in children. Plasma protein binding rises to 90% in uncomplicated malaria and 92% in cerebral malaria due to high levels of acute-phase proteins. Similarly, the elimination half-life rises to 18.2 h in severe malaria. There is extensive hepatic metabolism to hydroxylated derivatives. Urinary clearance is <20% of total clearance.
Clinical Use Falciparum malaria (alone or in combination with tetracycline, doxycycline, clindamycin or pyrimethamine–sulfadoxine)
Babesiosis (in combination with clindamycin)
It is particularly used in cerebral malaria if chloroquine resistance is suspected (Ch. 62). It is not recommended for treatment of uncomplicated falciparum malaria.
Side effects Up to 25% of patients experience cardiac dysrhythmia, hypoglycemia, cinchonism (tinnitus, vomiting, diarrhea, headache). Severe effects, including hypotension and hypoglycemia, are of particular importance in children, pregnant women and the severely ill. Rarely, it can induce hemolytic anemia (‘blackwater fever’). Quinine inhibits tryptophan uptake into cells.
Safety Profile Human poison by unspecified route. Experimental poison by subcutaneous, intravenous, intramuscular, and intraperitoneal routes. Moderately toxic experimentally by ingestion. An experimental teratogen. Human systemic effects by ingestion: visual field changes, tinnitus, and nausea or vomiting. Human teratogenic effects by ingestion: developmental abnormahties of the central nervous system, body wall, and musculoskeletal, cardovascular, and hepatoblltary systems. Experimental reproductive effects. Mutation data reported. Can cause temporary loss of vision. Quinine dermatitis is an occupational hazard to barbers particularly, and generally to people who work with quinine tonics, medcaments, or cosmetics. An irritant to mucous membranes. Combustible when exposed to heat or flame. Decomposes on exposure to light. When heated to decomposition it emits toxic fumes of NOx. Used to treat malaria.
Purification Methods Crystallise the quinine from absolute EtOH. It has been used as a chiral catalyst (see previous entry). [Beilstein 23 H 511, 23 I 166, 23 II 416, 23 III/IV 3265, 23/13 V 395.]
Quinine Preparation Products And Raw materials
Preparation Products (S)-1,1'-SPIROBIINDANE-7,7'-DIOL-->Cilastatin-->(R)-1,1'-SPIROBIINDANE-7,7'-DIOL-->1R-cis crysanthemic acid-->QUININE SULFATE-->QUININE HCL

Contact Details
Sales Manager

WhatsApp : +8613657291547